본문 바로가기

Fundamental

좌표계 (Coordinate System) 개념 정리

내용을 보강하여 3D Rigid Body Transformation 개념 정리 포스트에 업로드하였습니다.

 

1 Introduction

해당 포스트는 로봇공학에서 좌표계에 대한 공부 목적으로 작성한 포스트이며 이미 잘 정리된 여러 블로그 포스트들의 내용을 참고하여 작성하였다.

2 Coordinate System

두 사람이 하나의 돌을 바라보고 있을 때 돌을 표현하는 방법이 서로 다를 수 있다. A가 B에게 "돌이 어디에 어떤 자세로 있어?" 라고 물었을 때 B는 어떻게 대답해야 할까?

정답은 알 수 없다. 엄밀하게 말하면 질문에 오류가 있다.

  1. 어디를 기준으로 돌이 어디에 있는가?
  2. 돌의 표면 중 정확히 어느 점을 물어보고 있는가? 이처럼 물체의 위치와 자세를 이야기할 때 어디를 기준으로 표현하는가? (기준좌표계) 그리고 그 물체의 어디를 말하고자 하는가? (이동물체 좌표계)를 명확하게 해야한다.

   일반적으로 기준이 되는 좌표계 {S} 를 fixed frame, world frame, space frame으로 부른다. 이동하는 물체를 대표하는 좌표계 {B} 를 moving frame, body frame으로 부른다.

 

   강체의 경우 {B} 좌표계를 아무 곳이나 물체의 한 곳에 잡으면 된다. 보통은 무게중심에 잡는다. {B} 좌표계가 움직여도 강체는 형태가 변하지 않으므로 강체의 다른부분의 위치가 자동으로 결정된다.
   base frame {B} 의 원점을 P, 축을 (x^,y^,z^) 하고 space frame {S} 의 축을 (X^,Y^,Z^) 라고 하자. 이 때 space frame {S} 를 기준으로 base frame {B} 를 표현해보면 다음과 같다.
   \begin{equation}
   \begin{aligned}
   \vec{P}=P_1\hat{X}+P_2\hat{Y}+P_3\hat{Z}
   \end{aligned}
   \end{equation}

   그리고 base frame {B} 의 축 (x^,y^,z^) 를 (X^,Y^,Z^) 의 선형결합으로 표현하면 다음과 같다.
   \begin{equation}
   \begin{aligned}
       \hat{x}=r_{11}\hat{X}+r_{21}\hat{Y}+r_{31}\hat{Z}
       \ \hat{y}=r_{12}\hat{X}+r_{22}\hat{Y}+r_{32}\hat{Z}
       \ \hat{z}=r_{13}\hat{X}+r_{23}\hat{Y}+r_{33}\hat{Z}
   \end{aligned}
   \end{equation}

 

3 References